Calidad de vida y variables sociodemográficas como variables explicativas de obesidad

Autores/as

DOI:

https://doi.org/10.35622/j.rep.2024.01.001

Palabras clave:

calidad de vida, sociodemográficos, redes neuronales artificiales, obesidad

Resumen

Objetivo: Identificar las variables relacionadas con la calidad de vida y sociodemográficas que podrían explicar el porcentaje de grasa, así como las lipoproteínas de baja densidad, lipoproteínas de muy baja densidad, el colesterol total y los triglicéridos, todas asociadas a la obesidad. Métodos: Se llevó a cabo un estudio cuantitativo no experimental de conveniencia y explicativo. Los participantes incluyeron a 320 adultos con diferentes niveles de índice de masa corporal, de ambos sexos, que eran pacientes de la Escuela Superior de Medicina del Instituto Politécnico Nacional de 2018 a 2020. Se evaluó y midió la calidad de vida, lipoproteínas, colesterol y porcentaje de grasa. Se utilizaron regresiones lineales, regresiones categóricas, ecuaciones estructurales y redes neuronales artificiales. Resultados: En la red neuronal artificial, las variables con mayor peso sináptico fueron el estado civil, la ocupación y la edad; y en cuanto a la calidad de vida, la función cognitiva, la dependencia médica y el desempeño físico. En los modelos lineales, los factores explicativos incluyeron preocupaciones, aislamiento, percepción corporal, actitud ante el tratamiento, tiempo libre, género y estado civil. Conclusión: La percepción corporal, la edad, la dependencia médica, el estado civil y las preocupaciones fueron las variables de entrada que explicaron el porcentaje de grasa y los lípidos en sangre relacionados con la obesidad.

Biografía del autor/a

  • Gerardo Leija-Alva, Unidad Santo Tomás

    Maestro en Psicología por el Instituto Politécnico Nacional Centro Interdisciplinario de Ciencias de la Salud, México.

  • Felipe de Jesús Díaz-Reséndiz, Universidad de Guadalajara

    Doctor en Psicología por la Universidad Autónoma de México, México.

  • Víctor Aguilera-Sosa, Unidad Santo Tomás

    Docente en el Instituto Politécnico Nacional, México.

Referencias

Ahmed, H. O., & Ezzat, R. F. (2019). Quality of life of obese patients after treatment with the insertion of intra-gastric balloon versus Atkins diet in Sulaimani Governorate, Kurdistan Region, Iraq. Annals of Medicine and Surgery, 37, 42–46. https://doi.org/10.1016/j.amsu.2018.11.014

Anekwe, C. V., Jarrell, A. R., Townsend, M. J., Gaudier, G. I., Hiserodt, J. M., & Stanford, F. C. (2020). Socioeconomics of Obesity. Current Obesity Reports, 9(3), 272–279. https://doi.org/10.1007/s13679-020-00398-7

Arnett, D. K., Blumenthal, R. S., Albert, M. A., Buroker, A. B., Goldberger, Z. D., Hahn, E. J., Himmelfarb, C. D., Khera, A., Lloyd-Jones, D., McEvoy, J. W., Michos, E. D., Miedema, M. D., Muñoz, D., Smith, S. C., Virani, S. S., Williams, K. A., Yeboah, J., & Ziaeian, B. (2019a). 2019 ACC/AHA Guideline on the Primary Prevention of Cardiovascular Disease: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation, 140(11). https://doi.org/10.1161/CIR.0000000000000678

Arnett, D. K., Blumenthal, R. S., Albert, M. A., Buroker, A. B., Goldberger, Z. D., Hahn, E. J., Himmelfarb, C. D., Khera, A., Lloyd-Jones, D., McEvoy, J. W., Michos, E. D., Miedema, M. D., Muñoz, D., Smith, S. C., Virani, S. S., Williams, K. A., Yeboah, J., & Ziaeian, B. (2019b). 2019 ACC/AHA Guideline on the Primary Prevention of Cardiovascular Disease: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation, 140(11). https://doi.org/10.1161/CIR.0000000000000678

Arzate Hernández, G. (2022). Calidad de vida relacionada con la salud en adultos con normopeso, sobrepeso y obesidad. Revista Mexicana de Trastornos Alimentarios/Mexican Journal of Eating Disorders, 10(4), 397–405. https://doi.org/10.22201/fesi.20071523e.2020.4.583

Asociación Médica Mundial. (1964). Declaración De Helsinki. Principios éticos para las investigaciones médicas en seres humanos. https://acortar.link/Omxyu

Badawi, A., Liu, C. J., Rehim, A. A., & Gupta, A. (2021). Artificial neural network to predict the effect of obesity on the risk of tuberculosis infection. Journal of public health research, 10 (1), 1985. Doi.org/10.4081/jphr.2021.1985

Biermayr-Jenzano P. (2020). Obesidad y género: Enfoque de género y salud alimentaria nutricional en América Latina. LAC Working Paper 8. Washington, DC: International Food Policy Research Institute. Doi.org/10.2499/p15738coll2.134021

Campos-Nonato, I., Galván-Valencia, Ó., Hernández-Barrera, L., Oviedo-Solís, C., & Barquera, S. (2023). Prevalencia de obesidad y factores de riesgo asociados en adultos mexicanos: resultados de la Ensanut 2022. Salud Pública de México, 65, s238–s247. https://doi.org/10.21149/14809

Cámara de Diputados del Honorable Congreso de la Unión (2010). Ley Federal de protección de datos personales en posesión de los particulares. Nueva Ley DOF 05-07-2010. https://www.diputados.gob.mx/LeyesBiblio/pdf/LFPDPPP.pdf

Cuevas, A. G., Chen, R., Slopen, N., Thurber, K. A., Wilson, N., Economos, C., & Williams, D. R. (2020). Assessing the Role of Health Behaviors, Socioeconomic Status, and Cumulative Stress for Racial/Ethnic Disparities in Obesity. Obesity, 28(1), 161–170. https://doi.org/10.1002/oby.22648

Estrada, E., Veytia López, M., Pérez-Gallardo, L., Guadarrama, R., & Gaona, L. (2020). Relación de la grasa corporal con la alimentación emocional y calidad de la dieta en universitarios de México. Archivos Latinoamericanos de Nutrición, 70(3), 164–173. https://doi.org/10.37527/2020.70.3.002

Fastenau, J., Kolotkin, R. L., Fujioka, K., Alba, M., Canovatchel, W., & Traina, S. (2019). A call to action to inform patient‐centred approaches to obesity management: Development of a disease‐illness model. Clinical Obesity, 9(3). https://doi.org/10.1111/cob.12309

Fruh, S., Williams, S., Hayes, K., Hauff, C., Hudson, G. M., Sittig, S., Graves, R. J., Hall, H., & Barinas, J. (2021). A practical approach to obesity prevention: Healthy home habits. Journal of the American Association of Nurse Practitioners, 33(11), 1055–1065. Doi.org/10.1097/JXX.0000000000000556

Guerra, Walkiria; Herrera, Magaly; Fernandez, Lucía; Rodriguez Alvarez, Noslen. (2019). ISSN 2079-3480. Categorical regression model for the analysis and interpretation of statistical power. Cuban Journal of Agricultural Science, 53(1), 13–20. http://scielo.sld.cu/scielo.php?script=sci_abstract&pid=S2079-34802019000100013&lng=es&nrm=iso&tlng=en

Kolotkin, R. L., Meter, K., & Williams, G. R. (2001). Quality of life and obesity. Obesity Reviews, 2(4), 219–229. https://doi.org/10.1046/j.1467-789X.2001.00040.x

World Obesity Federation (2023). World Obesity Atlas 2023. https://www.worldobesity.org/resources/resource-library/world-obesity-atlas-2023

Marín-Soto MD, Méndez-Peña B., Murillo-Tovar MM, Ocadiz-Parra I, Aguilera-Sosa VR (2019). Food craving: el enemigo oculto en la obesidad. Rev Mex Enf., 7(2), 66–70. https://doi:10.24875/ENF.19000084

Méndez-Peña BI, Murillo-Tovar MM, Leija-Alva G., Montufar Burgos II, Serena-Alvarado A, Durán-Arciniega RS, Pérez-Vielma NM, Aguilera-Sosa VR (2022). Artificial neural networks model: Neuropsychological variables and their relationship with body fat percentage in adults. Mexican Journal of Eating Disorders, 12(1), 61–70. https://doi.org/10.22201/fesi.20071523e.2022.1.718

Meza C., & Moral J. (2013). Modelos Recursivos de Índice de Masa Corporal con Variables Sociodemográficas, Funciones del Yo y Alteración Alimentaria en Mujeres Mexicanas. Psykhe (Santiago), 22(1), 55-6. https://doi.org/10.7764/psykhe.22.1.593

Monereo MS., Pavón De Paz I, Molina BB., Vega PB., Alameda HC., López De La Torre CM. (2000). Health related quality of life (HRQoL) and obesity. Endocrinología y Nutrición, 47(3), 81–88. https://acortar.link/knyVYW

Moral de la Rubia J, Meza PC (2013). Atribución Causal de Sobrepeso/Obesidad y su Relación con el IMC y Alteración Alimentaria. Revista Mexicana de Trastornos Alimentarios, 4(2), 89–101. https://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S2007-15232013000200003

Morigny, P., Boucher, J., Arner, P., & Langin, D. (2021). Lipid and glucose metabolism in white adipocytes: pathways, dysfunction and therapeutics. Nature Reviews Endocrinology, 17(5), 276–295. https://doi.org/10.1038/s41574-021-00471-8

Parra, D. I., López Romero, L. A., & Vera Cala, L. M. (2021). Calidad de vida relacionada con la salud en personas con hipertensión y diabetes mellitus. Enfermería Global, 20(2), 316–344. https://doi.org/10.6018/eglobal.423431

Pérez-Vielma, N. M., Miliar-García, Á., Gómez-López, M., Marín-Soto, M. D., Leija-Alva, G., & Aguilera-Sosa, V. R. (2021b). Food Craving in Obese Subjects: Its Correlation with Atherogenic Index and Feeding Behavior-Related Gene Expression. Acta de Investigación Psicológica, 11(3), 5–16. Doi.org/10.22201/fpsi.20074719e.2021.3.388

Platzer, M., Fellendorf, F. T., Bengesser, S. A., Birner, A., Dalkner, N., Hamm, C., Lenger, M., Maget, A., Pilz, R., Queissner, R., Reininghaus, B., Reiter, A., Mangge, H., Zelzer, S., Kapfhammer, H.-P., & Reininghaus, E. Z. (2020). The Relationship Between Food Craving, Appetite-Related Hormones and Clinical Parameters in Bipolar Disorder. Nutrients, 13(1), 76. https://doi.org/10.3390/nu13010076

Ren, L., Wu, X., & Zhao, K. (2021). Obesity Mass Monitoring in Medical Big Data Based on High-Order Simulated Annealing Neural Network Algorithm. Computational Intelligence and Neuroscience, 2021, 1–10. https://doi.org/10.1155/2021/8336887

Rithanasophon, T., Thitisiriwech, K., Kantavat, P., Kijsirikul, B., Iwahori, Y., Fukui, S., Nakamura, K., & Hayashi, Y. (2023). Quality of Life Prediction on Walking Scenes Using Deep Neural Networks and Performance Improvement Using Knowledge Distillation. Electronics, 12(13), 2907. https://doi.org/10.3390/electronics12132907

Riveros A; Sánchez-Sosa J.J.; Groves, Mark Andrew (2009). Inventario de Calidad de Vida. Manual Moderno. https://www.manualmodernodistribuidoraelefant.com/incavisa-inventario-de-calidad--de-vida-y-salud-riveros-prueba-completa-591-p.asp

Saghafi-Asl, M., Aliasgharzadeh, S., & Asghari-Jafarabadi, M. (2020). Factors influencing weight management behavior among college students: An application of the Health Belief Model. PLOS ONE, 15(2), e0228058. https://doi.org/10.1371/journal.pone.0228058

Scheinker, D., Valencia, A., & Rodriguez, F. (2019). Identification of Factors Associated With Variation in US County-Level Obesity Prevalence Rates Using Epidemiologic vs Machine Learning Models. JAMA Network Open, 2(4), e192884. https://doi.org/10.1001/jamanetworkopen.2019.2884

Somnuk, S., Komindr, S., Monkhai, S., Poolsawat, T., Nakphaichit, M., & Wanikorn, B. (2023). Metabolic and inflammatory profiles, gut microbiota and lifestyle factors in overweight and normal weight young thai adults. PLOS ONE, 18(7), e0288286. https://doi.org/10.1371/journal.pone.0288286

Szczygielska, A., Widomska, S., Jaraszkiewicz, M., Knera, P., & Muc, K. (2003). Blood lipids profile in obese or overweight patients. Annales Universitatis Mariae Curie-Sklodowska. Sectio D: Medicina, 58(2), 343–349. https://pubmed.ncbi.nlm.nih.gov/15323217/

Vallejo M. (2002). El diseño de investigación: una breve revisión metodológica. Archivos de cardiología de México, 72(1), 08-12. http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1405-99402002000100002&lng=es&tlng=es

World Health Organization (1998). WHOQOL User Manual. Division of Mental Health And Prevention Of Substance Abuse World Health Organization. https://iris.who.int/bitstream/handle/10665/77932/WHO_HIS_HSI_Rev.2012.03_eng.pdf?sequence=1

Publicado

02/10/2024

Número

Sección

Artículos originales

Cómo citar

Calidad de vida y variables sociodemográficas como variables explicativas de obesidad. (2024). Revista Estudios Psicológicos, 4(1), 7-22. https://doi.org/10.35622/j.rep.2024.01.001

Artículos similares

1-10 de 81

También puede Iniciar una búsqueda de similitud avanzada para este artículo.